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SUMMARY 

An understanding has been obtained of the mechanism governing the motion 

(migration) of small gas bubbles in vibrated vessels described in the Introduction. 

Differential equations describing the behavior were derived»   equations  (27)  and 

(28),   under the restrictive assumption of an inviscid fluid}  from qualitative con- 

siderations it was concluded that viscosity does not affect the mechanism of migra- 

tion»  but may have quantitative effects.    A criterion when the influence of viscos- 

ity will be appreciable is given.    The situation is discussed at the end of Section I 

when the results of the analysis are compared with the pilot tests. 

No attempt has been made to solve the nonlinear differential equations in 

general.    Instead,   locations in space were determined in which the differential 

equations have time periodic solutions,  representing small oscillations of the 

bubbles.    The loci of these solutions form surfaces which separate the tank into 

regions of different bubble behavior.    In case of a rigid tank it was found that the 

bubbles above a certain level   h   will rise towards the surface,  while those below 

will sink to the bottom.    In the case of elastic vessels the regions have compli- 

cated shapes,  discussed for cylindrical tanks in Section  II and shown in figures 

6 and 7,    From the character of the regions it is concluded that,  if many bubbles 

are present, clusters of bubbles will collect in certain locations near the wall or 

bottom. 

This report has been concerned solely with the behavior of a single small 

bubble.    It will be followed by a second report describing a generalization of 

the analysis applicable to clusters of bubbles,   such as have been observed in 

the tests reported in Appendix A .    The second report will also include a more 

detailed study of the effect of surfaces and of the finite size of the vessel on 

clusters of bubbles. 

The analysis presented here indicates that the region just below the surface 

should always be one in which bubbles rise towards the surface and vent.    The 

theory therefore does not yet contain the explanation for the streams of small 

bubbles moving from the surface towards the bottom which were observed at 

high accelerations (see Appendix A).    It is suspected by the writer that this 

phenomenon may be caused by the pressure field of the sloshing motion which 

was present whenever the bubble stream was seen.    Further work in this direc- 

tion is required. 
i i 
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INTRODUCTION 

If a transparent vessel, partially filled with water, is vibrated in the 

vertical direction complicated phenomena can be observed.    If the vibration 

is sufficiently strong,  small individual gas bubbles created by surface dis- 
* 

turbances appear in the lower part of the vessel.      These bubbles do not 

rise to the surface but move along the bottom or side, or perform vibratory 

motions in the middle of the vessel.    It is the purpose of this paper to con- 

tribute to the understanding of the complex phenomena      observed by pre- 

senting an analysis for the motion of a gas bubble in a vibrated vessel. 

To demonstrate the fact that gas bubbles in a vibrated tank may not rise 

to the surface as one would expect from considerations of buoyancy,  the 

following simple experiment was made.   A rubber skinned test balloon of 

about 1/4-inch diameter was attached to a short piece of string at the end 

of a wire; this balloon was inserted in a cylindrical transparent plastic test 

tank, figure 1,  placing it on the centerline of the tank about 2 inches above 

the bottom.    Without vibration the bubble rises,  stretching the string 

vertically.    Vibrating the tank vertically with gradually increasing accelera- 

tion,  the position of the bubble on the centerline became unstable and snapped 

into a deflection position I,  see figure 2.    A slight further increase of the 

acceleration made this position also unstable,   and the bubble went into 

position II at the bottom of the tank.    If the acceleration was decreased by 

about   1 g the bubble returned to its original position.    The acceleration 

required to make the bubble sink was somewhat frequency dependent,  as may 

be seen from Table 1 giving the acceleration required to hold the bubble in 

position II, figure 2. 

This fact was first observed by T. C.  Lee,  Principal Engineer,  and 
C. C. Miesse,  Physicist, Aerojet-Gene rail Corporation,  who brought 
the matter to the writer's attention. 

A short description is attached as Appendix A. 



TABLE 1 

Cycles/second       60 90 120       150       175        200 

Acceleration I6g       14.5g      14g      13g      12g      11-5g 

The somewhat unexpected sinking of bubbles--contrary to buoyancy--has 

its counterpart in the field of underwater explosions.    It is known from exten- 

sive work on this subject that pulsating explosion bubbles do not simply rise, 

but move in a modified manner known as "bubble migration. "    Due to migra- 

tion an explosion bubble may in certain cases sink,  instead of rise.    It can 

therefore be expected that an analysis using methods similar to those employed 

in the explosion field will give an understanding of the phenomena observed. 

In the case under consideration the vibration will excite pulsations 

(meaning changes in radius) of the bubble and it will be shown that naigration 

effects do occur which modify the path of the bubble  and may even cause it 

to sink.    Specific attention will be given to the case of a bubble moving ver- 

tically in an oscillatory manner,  a situation which separates the cases of 

rising and sinking bubbles. 

The migration phenomena of explosion bubbles can be explained by an 

analysis using an incompressible,   inviscid fluid,   Herring    and Taylor,     and 

Bryant,      except that such an analysis does not explain the decay of the bubble 

pulsations due to radiation.    As this decay affects the migration of the explo- 

sion bubble only in a secondary manner it is usually considered as a correc- 

tion.    In the present problem it is intended to obtain the response of the 

bubble for cases where the amplitude of the pulsation is much smaller than 

in the explosion case,  and radiation effects need therefore not be included at 

all.    It is also assumed that the frequency of the forced oscillations of the 

vessel is small versus the natural frequency of the bubble;  this excludes the 

possibility of resonance of the bubble pulsations,  which would have required 

compressibility as a damping mechanism.    The present analysis,   similar to 

the references quoted,   does not consider changes in the spherical shape of 



the bubble.    The assumption of spherical bubbles is confirmed by observation 

on explosion bubbles,  except in their most contracted stage.    As only relatively 

small pulsations will occur in the present case any deviations from spherical 

shape can be expected to be minor and unimportant.    This reasoning is sup- 

ported by the fact that no visibly non-spherical bubbles were observed in the 

tests. 

Migration is a second order effect which cannot be explained by a linear 

theory of small vibrations.    It is therefore necessary to obtain equations of 

motion for large displacements which,  even for an approximate analysis,  can- 

not be completely linearized. 

To reduce the problem to its simplest form,  the behavior of a bubble in a 

large rigid vessel is considered first.  Section I.    It is assumed that the 

bubble is sufficiently far away from any surface--at least several bubble 

diameters--such that interactions may be neglected.    The results obtained 

are generalized in Section II to allow for the quite important effect of the 

elasticity of the vessel,  and--qualitatively--for the effect of proximity of 

surfaces and of viscosity. 



SECTION   I 

BEHAVIOR OF A GAS BUBBLE IN A LARGE RIGID VESSEL 

It is intended to study the motion of a small spherical gas bubble in an 

incompressible, inviscid fluid if the vessel containing the fluid is vibrated 

in the vertical direction. It is assumed, in this section, that the vessel is 

rigid and that a constant ullage pressure p will be maintained above the 

surface of the fluid; it is further assumed that the bubble is sufficiently far 

away from any suriace--at least several diameters--such that interactions 

are negligible. 

Equations of Motion 

Excluding rotational motions of the fluid the state of the system shown 

in figure 3 is fully described by three generalized coordinates: 

x(t)   -   vertical position of vessel with respect to a reference line 

A(t)  -   increase of bubble radius above a reference radius   a 

z(t)   -   depth of bubble below surface 

To obtain Lag range's equations,  expressions for the kinetic and potential 

energies of the system are required.    The bubble being very small compared 

to the dimensions of the vessel,  and far from any surface,  the kinetic energy 

is computed by utilizing the known virtual mass expressions for a sphere in 

an infinite fluid in the following manner.    The total velocity at any point is 

V    =     V      +    V.     +    V x        A. z 

where   v   = x   is the vertical velocity of the vessel which is not a function of 
x - 

the location,    v.    and   v     are the velocities due to the coordinates   A   and   z. A z 
Let   dV   be the element of volume,    p   the density of the fluid;  the kinetic 

energy   T   is then 

T   = .gjVdV   =   ?i2JdV + fJV^dV + SjVfdV +  PicJ(uA + ux)dV    (1) 

where   u.    and   u     are the vertical components of   v.     and   v   .   respectively. 



There is no coupling term between   v      and   v     because of symmetry.    The 

value of the first term in Eq.   (1 )   is simply   Mx  /2,    where   M   is the total 

mass of the fluid in the vessel;  the second and third terms are the familiar 

expressions for the kinetic energies of the respective motions of a sphere of 

radius   a + A   (reference 4, pp.   122,   124);  while the last term,  a coupling 

term,  is evaluated in Appendix B.    The total kinetic energy is,  therefore, 

M x2 +   2,rp{z + A)3Ä2  + -|p(a + A)3x2   - ^H p x-^[(a + A )3 z]    (2 

The potential energy consists of three parts:   the potential of the gravity 

field,     - g Mx + g p -«- (a + A )   z;    the potential of the gas above the surface, 
4ir 3 (a + A)   p   ;    the potential of the gas inside the bubble,  which can be 

computed from the pressure-volume relation 

p(a+A)3Y   =   pja3^ (3) 

where   y   is the ratio of the specific heats,  and   p,    the pressure in the bubble 

when its size equals the reference radius   a .    The potential becomes 

(4; 
00 4ir   pj Pja   T 

I        p d v   -■ * >j- 
Jv 3   Y "  Ma + A)  Y' 

Collecting all terms: 

4 ir                ,                                  4 ir             p. a   ' 
P   =   -gMx + --(a + A)   (P0+gpz)+ — —    3v    3 (5) 

3(y -  1)   (a +A)" 

The general form of Lagrange's equation is 

8    8L. 8L 

dt   8q 8q ^n ^n 
=   Q„ (6) 

where   L =   T - P;    the coordinates   q     are in turn   A,   z   and   x,    while 



Q     are the respective generalized forces.    In the present case all forces n 
have been included in the potential   P   except the external driving force 

producing the oscillation.   As this force does no work if  A   and   z   change, 

we have   QA  = Q    =0,    while   Q     does not vanish.   If one visualizes a 

situation where the displacement   x  is prescribed,   Eq.   (6),   with respect 

to the coordinate^,   x   is not required because it serves only to determine 

the force   Q fc    this leaves two differential equations for the two unknown 

functions   A   and   z: 

8    8L aL =  0     ■ 
9A        U      * 

8    8L 8L 
{*   9A 8t   8z 8z =   0 

After substitution. 

a [(a +A)3i]   =   2(a + A)3(x - g) (7) m 

3A P, a   Y (g - x)z z p 
A + wrr + = 2—    <8) 

2(a + A)       p(a + A)  Y a + A 4(a+A) p(a + A) 

Discussion of Equation (7) 

This equation represents the principle of conservation of momentum,   and 

it is useful to consider it for the simple case when the vessel is at rest, 

x =  0 .    Using the bubble volume   v = -*^(a + A)     as variable,   Eq.   (7)  may 

be written 

£CH - Pgv 

where the term   p/2 v   is the virtual mass of the bubble (for the z-motion), 

while   -pgv  is the buoyancy.    If   v  changes with time,  the velocity   z   is 

81  =   -28 «        vdt if 



Due to the fact that the bubble volume   v  is necessarily positive,  the 

integral will always increase with   t;    the term   1/v   will increase the 

velocity   z   if   v  is smaller,  or decrease it if   v  is larger than average, 

but   z   will always remain negative and the bubble will rise continuously. 

Now consider the situation if a time-dependent acceleration 

x(t)  =  Ng cos ut   is imposed where   N  is a number.    Equation (7) 

becomes 

1  f* 2g — I      (v - vN cos wt) dt z   =   -2g-l     (v - vN cos «tj dt (9) 
vJt 

o 

It is immediately apparent that the integral will not continuously increase 

if   N > 1 .    To show that the integral can even become negative; that is, 

that the bubble can sink, let the bubble execute an imposed periodic pulsa- 

tion   v =  v   (1 + a cos wt)   where  a   is a number ^defining the magnitude 

of the pulsations.    By substitution 

(v - vN cos ut)dt  =   v    j      fl --^ + N cos wt --^cos Zutldt       (10) 

o o 

The terms   cos wt   and   cos 2ut   under the integral give oscillatory contri- 

butions,  while the first two terms give a monotone contribution which 

describes the direction of the over-all motion.    If   oN > 2,    the integral 

will ultimately be negative and the bubble will sink;  if   N o =   2,    the bubble 

will execute an oscillation about a mean position. 

The above consideration shows the possibility of bubbles sinking,  pro- 

vided the bubble volume changes in the prescribed manner.   It remains to 

be shown that the imposed vibration will produce the assumed or an equiv- 

alent pulsation.    This requires simultaneous consideration of the two 

Lagrangiaji equations (7)  and (8). 



OBCillation of a Bubble Around » Mean Position 

Restricting the general problem of the motion of the bubble, it is asked 
whether there are combinations of imposed acceleration  x = Ng cos ut 
and bubble size and location for which a bubble will undergo a periodic vertical 
motion and pulsation.    The previous discussion has shown that for large   N 
(say   N^ 10)   only small volume changes   a =  2/N   are required;  the equa- 
tions can therefore be linearized with respect to the change of radius   A . 

It is convenient to replace the coordinate   z   by  ssh+£,    where   h is 
the depth at which a bubble of the reference radius   a   would be in equilibrium 
if prevented from rising;  this gives the xelation   p.   = p   +hgp.    Equations 
(7 )  and (8 )  can then be arranged as follow»: 

8   (ja +A)3e]  =   2(a + A)3(x-g) (II) Ff 

.   3 A2      Pl    r / a VY      i                e2 h 
i + + —t—i. —     + — (g -x)e = —x 

2a + A      p(a + A)L     \a + A/    J      a + A 4(a + A) a + A 

(12) 

If  A   is small,  the second term of Eq.   (12) can be dropped and the third 
term becomes, by expansion in powers of A 

3YP1 J 
—j-i-A   £ fl   A (13) 
a   p 

where SL is the frequency of small oscillation of a bubble of radius   a   at 
the pressure   p.   (reference   1,   page 79)*    If the terms containing   £   and 
|     in Eq.  (12) could also be neglected, which will be seen to be permissible 
later, Eqs.   (11) and (12) become 

ipQa+JA)*]   =   2(a+3A)(x-g) (14) 

Ä + XI2A   =   |x (15) 



If   x =  Ng cos wt,    the second equation has a solution of the form 

a 
1 

where 

A   =  % a cos wt (16 ) 

3h              1               hp               1 
a   =    Ng    =    Ng 2 (17) 

a iL   - u YPi 1 - TZ 
SI 

Substitution of Eq.   (16)  into Eq.   (14)  gives 

■JrUl +     cosut)iJ  =   2(1 + acos «t)(Ng cos cot - g) 

= (aN - 2) g +♦ 2Ng cos wt + oNg cos 2wt - 2 ag cos u>t 

(18) 

which leads to an oscillatory solution only if 

aN  =   2 

In this case 

£   =   ^8.(2 sin «t - 1* sin 2«t .. . ) (19 ) 
(0 c 

where terms containing higher power of   a   were omitted.    Further, 

i   =   -^(2 cos «t --^L cos 2wt . . . ) (20) 
u 

The oscillatory solution visualized can only have physical meaning if the 

amplitude   |   of the vertical motion remains smaller than the depth   h,    as 

the bubble would otherwise vent;  this requires 

W
2»^ (21) 



To justify the dropping of the terms containing   |   when obtaining 

Eq.   (15),  the neglected terms can be estimated for   N » 1 » a : 

If                     1   -21      N   ß                                             /N   K  \ 
   (g - x)e   - - I V*1 + 3 cos 2wt)   - 0    1_ (22) 
a + A L 4     J      4a<ü Vau     / 

This can be compared with the right-hand side of Eq.   (12),   which is of 

the order 

It is easily seen that the necessary condition (21 ) automatically ensures 

that the expression (22) is small versus (23) The neglected terms can 

therefore neve'- be of consequence for the oscillatory solutions contemplated. 

Equations (17)  and (18)  can be solved for the value   ht   noting 

Pi  K  P0+ Pgh; 

P 1 
h   -••   — (24) 

PS N2fl,2 _ 1 

2Y(£LZ   -   u2 

the solution being meaningful only if Eq (21 ) is satisfied The size of the 

bubble appears only in the value of the frequency *V and because for small 

bubbles usually   &,    >> w        Eq     (24)   simplifies to 

P 2 y 
h      :      ^■-T

1  f«) 
Pg   N     -   2y 

Equation (25)  furnishes positive values   h   for any value   N >   >/2 y i    but 

because   a -  2/N   was assumed to be small,    h   may be inaccurate unless 

N   is much larger than    \/2 y .    Equation (21 ) then defines frequencies   w 

above which the depth found will apply.    If   w   is comparable to H.,    Eq.   (24) 

must be used;   however the form of this equation is such that   h   becomes 

10 



negative if   w>Jll    and no oscillatory solution exists if   u >iX;    as a rule 

oj  must be even noticeably smaller than XX,    otherwise Eq.   (21 )  will not 

be satisfied. 

Stability of the Oscillatory Solution 

It is important to realize that the oscillatory solution just obtained is 

unstable;  that is,   one cannot expect to observe bubbles executing oscilla- 

tions on the level   h   given by Eqs,   (24)   and (25).    To prove the instability 

consider Eq.   (17).    If   h   is slightly smaller than the required critical value, 

a   will also be smaller than required to satisfy the condition   aN -   2j    the 

first term of Eq.   (18)  will then be negative such that the bubble has an average 

upward velocity;  that is,  it will move away from the level   h   of steady oscil- 

lations.    If   h   were slightly larger,  the bubble would similarly have an average 

downward velocity,  again away from the level   h .    In case of any disturbance, 

regardless in which direction,  the bubble will not return to its original motion; 

i.e.,  the motion is unstable. 

In spite of the fact that the motion described by the solution found has 

therefore no physical reality,  the critical level   h   for the unstable solution 

has an important meaning:   bubbles above the critical level   h   will rise to the 

surface,   while those below will sink.    This conclusion is in qualitative agree- 

ment with observations. 

It might already be stated at this point that it will be seen in Section II 

that the assumption of a rigid vessel on which the above discussion is based 

is an oversimplification,  and that a more refined analysis may furnish more 

than one level of oscillatory solutions,  some of which are stable. 

11 



Comparison with the Pilot Tests 

The result obtained,   Eqs.   (24)  and (25),   can be compared with the 

result of the simple test reported in Table   1 .    To obtain a fair comparison 

the effect of the weight of the rubber skin should be allowed for,  and it can 

be seen easily that the added weight will reduce the critical depth   h .      One 

should expect,  therefore,  that the values   h   computed from Eq.   (24) for 

the appropriate values   N   of the acceleration should be larger than the test 

depth of the bubble,    h -^ 7 inches.    The natural frequency Ä of the 1/4-inch 

bubble tested is so much higher (iL > 1000 cycles/sec ) than the test fre- 

quencies   u,    that Eq.   (25) may be used; the computed values of   h  are 

shown in Table  2,  using   p /pg =   33 feet   and   y =   1.4. 

TABLE 2 

(h   ir inches,    4  in inches/sec ) 

Cycles per second 60 90 120        150        175 200 

From Table   1 : N   = 16 14.5 14 13 12 11.5 

From Eq.  (24): h   = 4.4 5.4 5-8 6.7 7.9 8.7 

t   ^ 2Ng/u = 32 20 14 11 8.5 7 

While the computed values   h   are of the expected order of magnitude, 

not all are larger than   h =   7 in.,  as predicted by the theory.    It appears 

that the lack of agreement can be ascribed to the unrealistic assumption of 

an inviscid fluid,  which is not justified for the entire range of the test.    To 

show this,  the last line of Table 2 contains the maximum velocities   £   of 

the bubble, computed from the first term of Eq.   (19 ),    | —  2Ng/w .    The 

problem of viscosity effects is discussed in Appendix C,   where it is 

* 
h   will be reduced to   h(l - ß)   where   ß   is the ratio of the weight of the 
skin to the buoyancy of the bubble.    The ratio   ß   for the test case is not 
known,  but was presumably about   0. 1 - 0.2 . 

12 



concl' ded that such effects are small provided the velocity of the bubble remains 

small compared to its terminal velocity when rising in a gravity field;  for the 

present case this velocity is of the order of  10 in. /sec,  and the inviscid analysis 

cannot be expected to give a good value for the depth   h,   except for high fre- 

quencies,    w   > 150 cycles/sec.    It is also concluded in Appendix C that viscosity 

will increase the value of the critical depth   h;   in the limiting case,  the actual 

depth would be three times the value according to Eqs.   (24)  and (25).    The 

actual depth,    h ~   7 inches,   being larger than the computed ones shown in 

Table 2,   the direction of the differences is in accordance with this prediction. 

13 



SECTION II 

MOTION OF A GAS BUBBLE IN AN ELASTIC VESSEL 

Equations of Motion 

Maintaining all other assumptions made in the previous section,  the effect 

of the elasticity of the vessel on a small bubble can only originate from the 

modified pressure field in the elastic vessel.    In the rigid vessel the pressure 

at any instant is a linear function of the depth below the surface only,  while in 

an elastic vessel the pressure is a nonlinear function of all three coordinates. 

It is not necessary to treat the problem of the vessel and the bubble as a 

unit.    Let the pressure field in the vibrated elastic vessel without the bubble 

be known;  because of the fact that the motion of a small bubble can essentially 

depend only on the pressure field in its immediate vicinity,  one can use the 

equations of motion derived for the case of a rigid vessel for any case, pro- 

vided one identifies the significant factors;  that is,  the pressure p   due to the 

vibration and its gradient.    For the present purpose it is sufficient to use the 

rimplified Eqs.   (14)  and (15).    The pressure   p   due to the vibration for the 

case of a rigid vessel is 

8 p   =   -phx, grad p   =   -^   =   - p k (26) 

and the equations of motion can be rewritten 

A + il2A   =    - — (27) 
ap 

Tt(!a+3A)9   =   -2<a+3A)0|l+8) {28) 

where   4   is the vertical component of the bubble velocity.    Similar equations 

for the horizontal velocities can be written, but do not contain the term   g . 

14 
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Qgcillatory Solutions 

Consider the case where the imposed pressure is of the form 

p   =   pg f(h) cos cat (29) 

where   f (h)   is positive,   has the dimension of a length,   and is a function of 

the depth   h   and also of horizontal coordinates.    Searching for oscillatory 

solutions,   Eqs.   (27)   and (29) give 

A   =   TT a cos cot (30 )i 

where 

gp         f(h) 
a   = _ (31) 

VPj   1 - « /A, 

Substitution in Eq.   (5)  gives 

-^-Ha + 3A) ^J   =    - ag [2 + of (h)  +   oscillatory termsj (32) 

where   f'(h)  ~  (8f/8h).    The right-hand side is purely oscillatory only if 

2 + of   -  0,    or 

tl-if^-J^^ (33) 

which can be solved for the depths   h   of oscillatory solutions. 

Stability of Oscillatory Solutions 

To decide on the stability of such solutions, consider the situation at 

a depth h + dh which differs slightly from a root of Eq. (33 ). In such a 

case 

•^r(a+3A)£]    =    f-ag-yjj (2 + of fj dh  +  oscillatory terms (34) 

15 
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If the coefficient of   dh   in this expression is positive, the bubble will 

migrate away from the oscillation level   h   and the solution is unstable; but 

if the coefficient is negative, the disturbed bubble will return to the original 

state and the solution is stable.    The condition for stability is, after 

substitution, 

^ 
A(fi<° *"> 

Noting   p.   =  p+gph,    the condition may be written 

ff" <   -f'2 + ^tf'f (36) 
Pi 

In the case of a rigid vessel   f(h)  = Nh,    and stability would require 

o < -i + £&2i 
Pi 

which can never be satisfied because   p,  >  pgh. 

One can investigate,   similarly,   stability against disturbance in the 

horizontal plane,  say in a direction   r .    The equation for the migration 

follows from Eq.   (28) by setting   g =  0   and replacing   h  by   r .    Oscil- 

latory solution can only occur if 

P   -   0 (37) 

The condition for their stability becomes 

82f f-^-4   < 0 (38) 
8r 

f   being positive, these two equations will be satisfied at points on any 

level   h   where   f   is a maximum.    As the imposed vibration pressure is 

16 
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proportional to   f,    it follows that the bubble will oscillate in a stable motion 

if Eg.   (36)  is satisfied and if the pressure amplitude is  a maximum compared 

to other points on the same level   h. 

It must also be stressed that in locations where the oscillations are stable, 

bubbles above the level   h   will sink,  and those below will rise .    This is the 

exact opposite of what was found in the case of a rigid vessel,  where the only 

possible oscillatory motion was unstable. 

Application to a Cylindrical Tank 

The pressure field  p   for the case of an elastic cylindrical tank,  figure 4, 

has been studied in reference    5.»    In the range of frequencies of present 

interest the pressure distribution is very well approximated by an expression* 

f(h)   =   üf-in(^)lo(^) (39) 

where   ü   and   p.   are constants,     r   is the radial coordinate,    R   the tank 

radius,  and   I     denotes the modified Bessel Function.    The constant  Ü 

defines the magnitude of the pressure,   while   |i   is defined in reference 5;  f 

it depends on the properties of the tank**  and on the forcing frequency   u . 

The depth   h   of oscillatory solutions can now be determined from Eq.   (33), 

which becomes 

sin fc £) 

2 ix p 2ix h 

Rpg R 

(40) 

According to reference   5   this expression is a good approximation 
except in a region near the bottom of the tank where   h > L> - R/2 . 

For the special case of a rigid tank one finds   |x =  0,   and Eq.   (39) 
becomes in the limit   f (h)  = "CTh .    Substitution in Eq.   (29 ) shows that 
in this case  Ü =  N,    where   Ng   is the peak acceleration applied to the 
rigid tank. 
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where 

C   =   ÜIo(^) (41) 

Equation (40) is graphically represented in figure 5 in a typical manner. 

If the constant   C,   representing the applied acceleration, is large enough 

there will be two roots   2ji —-  < IT   (or one double root),  and possibly further 

roots above   Ztr.    To determine the stability one could use Eq.   (36).    How- 

ever,  Eq.   (35) from which (36)  was derived is identical with the statement 

that the derivative of the left side of Eq.   (40) be negative;  as the slope of 

this curve in figure 5 for the first root is necessarily positive^ it will be 

unstable,  while the next larger root where the slope is negative is stable. 

The third root,  if any,  will again be unstable,  etc.    The roots occur in pairs 

of one unstable and one stable root; if a double root occurs it is easily seen 

that it is unstable. 

The question of the location of a point of stable oscillation in the hori- 

zontal plane remains to be considered.    According to Eq.   (38) it is neces- 

sary that the pressure function   f   be a maximum considered as a function 

of   r;    the modified Bessel function   I   (p, r/R)   in Eq.   (39) has a minimum 

for   r -  0,    but no maximum at all,  indicating that there are no locations of 

stable oscillations in the interior of the tank.    The reasoning which leads to 

the stability criterion (35) indicates that bubbles will move away from points 

of unstable oscillations,  applied to the present case,  they will therefore move 

away from the axis of the tank,  towards the walls.    In the vicinity of the walls 

the present theory ceases to be valid,  and to obtain a complete picture the 

effect of surfaces must be included,  at least in a qualitative manner. 

Effect of Surfaces on the Motion of Bubbles 

The effect of a neighboring rigid surface on the motion of an oscillating 

bubble has been determined by the use of the image principle in reference 1. 

The major effect found is an attraction of the bubble by the field of the image. 
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In first approximation the bubble obtains an additional velocity   ^M   directed 
towards the rigid surface. 

eM y a "— +  y—, |    a-'f—)    dt (42) 

where   H  13 the distance of the center of the bubble from the surface,  and 

a = a + A   is the instantaneous radius of the bubble.    If the radius   a   varies 

harmonically the first term is just oscillatory and therefore not important, 

while the second term is the continuing migration towards the surface. 

While Eq.   (42)  was derived for a rigid surface,  it should apply 

approximately also to the case of the walls of an elastic vessel provided 

the bubble is sufficiently small.    This conclusion will hold provided that 

the mass of the wall area affected by the pressure field    of the bubble is 

appreciably larger than the virtual mass of the bubble. 

It is therefore concluded that small bubbles will be subject to an addi- 

tional motion towards the walls of the vessel which is superimposed on the 

motion previously determined.    This additional motion is proportional to 

]/H     and is therefore appreciable only if the distance   H  is of the order of 

the radius   a . 

Discussion of the Result for an Elastic Cylindrical Tank 

Equation (40) can be used to determine the regions of different bubble 

behavior in an elastic cylindrical tank.    For a given frequency and externally- 

imposed acceleration of the tank,  the constants   Ü   and   }x   in Eq.   (i9) are 

computed according to reference 5.    Solutions   h   of Eq.   (40),   if any,  will 

also be functions of the location   r;   these solutions will define surfaces 

separating regions of different bubble behavior. 

* 2 The order of magnitude of this area is   H   . 

A more detailed treatment will be included in a later report. 
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Figure 5,   representing Eq.   (40),   in a typical manner indicates that 

for small values of   C,    that is for small accelerations, no solution   h   exists. 

Noting that   C = ÜI  (\i r/R)   is also a function of the radius,  it is seen that 

the value   C   is a minimum for   r =  0   and increases towards the walls,    r —»-R. 

Therefore,  if the acceleration is gradually increased,  a range will be reached 

where Eq.   (40),  while having no root for   r =  0,    does have solutions fo- 

larger values of   r .    The resulting situation is shown in figure 6a .    For a 

sonnewhat larger acceleration,   Eq.   (40) will have roots for any value of   r, 

and two separate surfaces as shown in figure  6b are obtained. 

The behavior in the regions separated by these surfaces can best be 

described by an indication of the direction of the vertical component of the 

motion in the various regions.    As previously indicated,  there will also be 

horizontal motions--from the centerline towards the walls--in all regions. 

As the upper surface    A,   figure 6b,   represents locations of "unstable" 

oscillations, bubbles will move away from it; the reverse applies to the 

lower surface   B .    It follows that bubbles in the shaded volume between the 

two surfaces will move downward and outward,  while the motion elsewhere 

will be upward and outward.    In the vicinity of the walls of the vessel the out- 

ward velocity will be increased by the additional local motion towards the wall. 

Bubbles below the upper surface   A   can be expected to find their way towards 

C,    where the lower surface   B   meets the wall of the tank. 

In the transition case shown in figure 6a,   bubbles in the shaded region 

will again move downwards towards   C,   while those in the lower part of the 

tank may go towards   C   or vent,  depending on their radial location. 

One further case which should be mentioned is shown in figure  6c .    It 

is possible that the lower surface   B,   defined by the second root of Eq.   (40), 

lies outside the tank.    In this case bubbles will simply move down towards the 

bottom and remain there.    They will not move towards the wall because the 

pressure distribution (39 ),   from which the outward motion elsewhere is 

derived,   does not apply close to the bottom.    The situation shown in figure  6c 
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is typical for a rather rigid tank where the parameter   \i.   is quite small; 

it applies for the pilot tests described in the Introduction and in Appendix A. 

In very flexible tanks more than two separating surfaces mpy occur, as 

shown in figure 7. In such cases two or more circles C, C are potential 

locations for the collection of bubbles. 
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APPENDIX  A 

OBSERVATIONS ON A VIBRATED TRANSPARENT TANK 

To study the phenomena tentatively,   a cylindrical transparent plastic 

container partially filled with water,  figure 1,  was vibrated vertically by 

means of a vibration table through a range of frequencies and accelerations. 

A typical result was as follows:   Setting the machine at 80 cycles/sec the 

acceleration was increased gradually.    At first only ripples of various pat- 

terms occurred,   which were followed by droplets being thrown upwards. 

Beginning at about  11 g  acceleration--fully developed at about  14g--an anti- 

symmetrical surface motion of roughly 160 cycles/min appeared,  figure 1A; 

to the eye it seemed to be a rotary motion,  but it was judged to be a combina- 

tion of two antisymmetric motions at right angles to each other having dif- 

ferent phases.    The amplitude stabilized at about  1 25 degrees,  the observed 

frequency being slightly smaller than the computed one (190/min) for anti- 

symmetrical small vibrations in a rigid vessel. 

When this antisymmetrical motion was nearly fully developed,   at   13 g, 

some gas bubbles of about  1/10-inch diameter detached themselves from the 

surface and travelled rather slowly downwards;  after reaching a level of 

2-3 inches below the surface most bubbles went upwards again;   occasionally 

one clung to the side or was observed making circular motions at the bottom. 

As the acceleration was increased some bubbles seemed suspended  3-5 inches 

below the surface;  these bubbles executed two simultaneous vertical vibratory 

motions: one of the forcing frequency which made them appear oblong in the 

vertical direction (this was resolved with a stroboscope);  the other motion 

had about the frequency of the antisymmetrical surface mode and about 

1/8-inch amplitude.    When the acceleration reached  24g  a stream of bubbles 

of nearly equal size descended to the bottom;  if the acceleration was maintained 

for one-half to one minute a resonance situation set in,   forcing stoppage of the 

test;  if the acceleration was reduced after a few seconds a cluster of bubbles 

could be maintained at the bottom,  and sometimes a few inches above the bot- 

tom clinging to the wall.    If the vibration was stopped at any time all existing 

bubbles rose rapidly to the surface. 

23 



Similar phenomena,  occurring in the same sequence but at different 

accelerations,   were observed in the range from  35 to  150 cycles/second. 

The matter of principal interest here is the fact that bubbles formed in the 

surface region will appear and remain at lower levels,  contrary to gravita- 

tional forces.    The tests show clearly,   also,  that in a strongly vibrated ves- 

sel bubbles are attracted by the sides and bottom of the vessel,   and also by 

each other.    Bubbles on the bottom,  for example,  w«;re regularly seen moving 

in groups,   close to each other,   without merging.    Clusters of bubbles formed 

in the final stages remained together also,   clinging to either the wall or the 

bottom of the tank. 

Two points concerning the bubbles might be emphasized without attempt- 

ing any interpretation at this time.    First,  it appeared that the size of the 

bubbles observable at any time was identical,  as far as the eye could tell, 

particularly in the final stage when a stream of bubbles descended from the 

surface.    Secondly,  in the tests witnessed by the writer,  bubbles were not 

observed,   except at the surface,  until after the antisymmetrical surface 

motion was quite noticeable. 

Apart from the behavior of bubbles and bubble clusters,  the writer was 

struck by the pronounced anti symmetrical motion of the surface at and above 

critical values of the applied acceleration.    One does not expect to excite 

antisymmetric modes by the axial,   that is symmetric,  motion;   yet the obser- 

vations do not permit dismissal of the existence of these anti symmetrical modes 

as accidental.    The accelerations at which these motions started,   and became 

fully developed,   respectively,   are given in the following   Table  A for various 

frequencies. 

TABLE   A 

Cycles/second 30             40 80 100 150 

Acceleration in   g 4-5          ?-7 11 - 14 15-20 20- 24 

It is planned to study the question of the origin of these sloshing motions 
because the matter may have consequences quite removed from the bubble 

problem. 

24 



APPENDIX   B 

EVALUATION OF THE LAST INTEGRAL IN EQUATION (1 )* 

Let   dV =  d| dA   where   g   is a vertical coordinate,  figure  3A,   and 

dA   is an element of area in the horizontal plane 

(u.   + u   )dV   ^ (uA + uz)dA| de -] (a) 

The integral in the bracket is the downward flux   F   through a plane on 

the level   ^   due to the connbined motions   A   and   z,   and the integral in 

Eq.   (a)   equals   JFd^ ■    If the plane is below the bubble the flux   F   must be 

zero because the fluid is incompressible.    If the plane is above the bubble,   or 

cuts the instantaneous position of the bubble,  the flux   F(£ )   is the negative 

rate of change,    (- 8B/8t) ,   of the partial volume   B(£)   of the bubble below 

the plane,  figure 3A.   Therefore, 

,z + a +A 

(uA + u   )dV v A        z' 8t 5   "   ' 8t 

z+ a + A 

B(e)d| 

Integrating by parts and noting that the boundary terms vanish because 

B(z + a + A)  =  0. 

8 
pz + a +A 

{uA + u   )dV   =   -^r v  A        z' 8t eMillde. .|_ ^(a.Ar (b) 

The value of the last integral was obtained by noting that it represents the 

negative first moment of the total bubble volume with respect to the surface. 

One might be tempted to compute this integral simply by substituting the known 
values of   u.    and   u     for an infinite unbounded fluid.    This would lead to an A z 
incorrect result as the effect of the boundary,   even if very far,   contributes 
substantially to the value of this integral.    The method of evaluation used here 
includes this effect. 
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APPENDIX   C 

EFFECT OF VISCOSITY 

3 
As the buoyancy forces are proportional to   a ,   while viscosity forces 

change as the surface,  that is   a  ,   viscosity will enter the problem,   and 

even control for sufficiently small bubbles.    The viscous force resisting the 

displacement of a bubble of radius   a + A   can be expected to be of the form 

C(a + A)  z   where   C   is a constant.    This force can be included in the 

analysi s modifying Eq.   (14): 

-^   (a + A)3e    +C(a + A)2i   =   2(a + A)3(x-g) (a) 

while Eq. (15) remains unchanged. The problem can be treated as before, 

and oscillatory solutions exist in certain cases. The character of the solu- 

tion changes only with regard to the phase of   £   with respect to   x . 

To see the nature of the modification consider the extreme case of very 

small bubbles such that the first term in Eq.   (a),   representing inertia 

effects,   can be dropped; 

i   =   ^(a +A)(i- g) (b) 

Substituting the solution (16) for A one finds easily that oscillatory solu- 

tions exist,   under the same assumptions as before,   but provided that 

oN   =   6 (c) 

instead of the previous condition      N =   2 .    It is interesting to note that the 

limiting condition (c)  does not depend on the value of   C.    When the critical 

depth   h   is computed about 3 times larger values are found than before. 

Caution is required, however, when using Eq. (a). By applying it to 

the steady rise of a bubble in a constant gravity field, it can be shown that 
this equation is valid only for quite small bubbles.    Equation (a)  leads to 
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a linear relation between the radius and the terminal velocity which agrees 

with experiments for air bubbles in water only for radii of less than 0. 1 cm; 

for larger bubbles the terminal velocity increases only slowly because compli- 

cated phenomena,   like spiraling,  occur (Eq.   6). 

In view of the above, just a rough clue   as to whether or not viscosity will 

modify the results of the analysis of the main body of this paper can be ob- 

tained by comparing the velocity   £,   Sq.   (19),   and available information on 

the terminal velocity of rising bubbles.    For bubbles between one-tenth to 

one inch in diameter,  the terminal velocity of air bubbles in water is 8 to 

10 inches per second.    Unless the velocity   ^   is smaller than this value, the 

actual depth  h   can be expected to be larger than that computed from Equa- 

tions (24)  and (25). 
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